==================================================================== :mod:`gou07` : unidirection dimerisation and quadratic autocatalator ==================================================================== Overview ~~~~~~~~ The :mod:`cmepy.models.gou07` modules defines two models of systems given as examples by Goutsias [GOU07]_ . The first model is a unidirectional dimerisation model, which consists of the single reaction: .. math:: P + Q \xrightarrow{k} PQ The rate coefficient for this reaction is :math:`k = 0.001`. Initially there are 10 copies of both species :math:`P` and :math:`Q`. This model can be used in CmePy as follows:: from cmepy.models import gou07 model = gou07.create_model_uni_dim() The second model defined by this module is called the quadratic autocatalator, and is a system of six reactions: .. math:: S \xrightarrow{k_1} P \\ D + P \xrightarrow{k_2} D + 2P \\ P + P \xrightarrow{k_3} P + Q \\ P + Q \xrightarrow{k_4} 2Q \\ P \xrightarrow{k_5} \star \\ Q \xrightarrow{k_6} \star The rate coefficients of these reactions are :math:`k_1 = 0.002`, :math:`k_2 = 0.001`, :math:`k_3 = 0.005`, :math:`k_4 = 0.004`, :math:`k_5 = 0.002` and :math:`k_6 = 0.050`, while the initial copy counts are 3 copies of the species :math:`S` and zero copies of all other species. This model can be used in CmePy as follows:: from cmepy.models import gou07 model = gou07.create_model_quad_autocat() .. Note:: Goutsias [GOU07]_ actually assumes that the copy count of the species :math:`S` used in the above model is in fact *constant*, so that the first reaction :math:`S \xrightarrow{k_1} P` proceeds with a fixed propensity. This behaviour can be enabled by passing the keyword argument ``fixed_s = True`` when calling the :func:`create_model_quad_autocat` function to create the quadratic autocatalator model. Running the model ~~~~~~~~~~~~~~~~~ The source code for these models is listed below. The function :func:`main` defined in the module :mod:`cmepy.models.gou07` solves the quadratic autocatalator model. To run this function, open the Python interpreter and enter: >>> from cmepy.models import gou07 >>> gou07.main() This will solve the system up to :math:`t = 1000`, over 100 steps, then display plots of the standard deviation and expected value of the species counts, as seen below. Sample results ~~~~~~~~~~~~~~ .. image:: gou07_ev_plot.png .. image:: gou07_std_dev_plot.png Source ~~~~~~ .. literalinclude:: ../../cmepy/models/gou07.py .. rubric:: References .. [GOU07] `Goutsias, J., Classical versus stochastic kinetics modeling of biochemical reaction systems, Biophysical Journal (2007), Vol 92, pp. 2350--2365. `_